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AbstracL The excess conductivity behaviour of highly oriented YBa2CeaOT_ z thin films

prepared by both coevaporation and laser ablation has been studied in detail in the
n_luced-temperature range 9 x 10 -4 < t < 1. The exces_ conductivity in all the

films studied was found to diverge sharply near To, in agreement with the conventional
mean-field thoery. However, the detailed temperature dependence could not be fitted

to either the power-law o¢ the logarithmic functional forms as predicted by the theory.
The excess conductivity of all the films was found to be o[ponentially dependent on the
temperature over nearly three decades for 9 × 10 -4 < t < 10 -1, in contradiction to
the mean-field theory.

1. Introduction

The rounding of the superconducting phase transition has been conventionally at-
tributed to fluctuations in the magnitude and lifetime of the order parameter. By
considering fluctuations of magnitude less than the order parameter in the Ginzburg-
Landau (GL) theory, a critical temperature region was predicted in which the OL
theory will not be valid. For temperatures greater than the critical limit the excess
contribution Act to electrical conductivity is estimated using the mean-field value of

the order parameter in the time-dependent GL (TDGL) theory. The excess conductiv-
ity A_, is defined as crexp - c7c_1¢where cTexp is the experimentally observed electrical
conductivity and or, to the conductivity due to normal-electron scattering alone in
the absence of superconducting fluctuations. It is found to follow a power-law-type
temperature dependence given by

(t)-" O)

where t is the logarithm of the reduced temperature given by ln(T/7_ f) __
[(T- T_ f)/T_ f] for t < 1 (Ty r is the mean-field transition temperature) and
r_ a constant which depends on the dimensionality of conduction [1]. For three-

dimensional (3D) conduction it is ½ and for two-dimensional (2D) conduction it is 1.
Hence the temperature dependence of A_r has been extensively studied in order to
determine rSand, thus, the dimensionality of order parameter fluctuations, the nature
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of contributions to excess conductivity and also to estimate the coherence length. In
the case of YBa2Cu30 r, equation (1) has been extensively used to determine the
dimensionality of Act in the range 10 -z < t < 1 and it has been reported to be 3D,
2D and quasi-2D crossing over to a 3D behaviour close to Tc [2]. Recently, however, it
was found that Aa does not exhibit the classical power-law dependence on t in the
mean-field regime but instead has a logarithmic dependence [3]. The deviation from
normal behaviour of the specific heat of an untwinned single crystal was also found
to exhibit a logarithmic temperature dependence in the range 10 -4 < t < 10 -1
by Regan et al [4]. The contribution of fluctuations to diamagnetic susceptibility in
bulk pellets on the other hand was found to obey the predictions of conventional GL

theory [5]. Howson et al [6] have studied the variation in thermoelectric power up to
Tc in single crystals and found that it exhibits an anomalous peak near Tc because
of the presence of 3D divergent fluctuations. This large body of experimental results
dearly indicates that the phenomenon of fluctuations and the length of the critical
region in the oxide superconductors is still not completely understood.

In the present work we report the systematic study of Act in highly oriented
YBa2CuaO7_ _ thin films prepared by two different techniques: coevaporation and
laser ablation. The study of fluctuation effects requires the background or normal-
state contribution to the overall conductivity to be accurately determined. Hence
the normal-state behaviour was analysed in terms of both the finear metallic conduc-
tion phenomenon and the more recent resonating-valence-bond (RV8) model [7]. It
was found that the film with the lowest room-temperature resistivity follows metallic
conduction behaviour while the other films follow the RVB model. The temperature
variation in Ao for all the films was found to deviate completely from that predicted
by the conventional OiL-based models.

2. Experimental methods

The thin films of YBa2CuaOr_ _ were deposited onto SrTiO a (100) substrates by two
methods: coevaporation and laser ablation. In the coevaporation, Y and Cu were
electron beam evaporated while BaF 2 was resistively evaporated onto a cold substrate
in an oxygen ambient. The thickness of the as-deposited film is 0.5 pro. The films were
later annealed at 850"C in wet flowing oxygen to form the superconducting phase.
In the case of laser ablation the film (0.3 t_m thick) was deposited onto a heated
substrate in an oxygen atmosphere from a sintered YBa2CaO 7 target. Structural
characterization of the films was done by scanning electron microscopy and large-
angle x-ray diffraction. The DC transport behaviour as a function of T was studied
by the standard four-probe method. Thin Au wires attached to the film surface by
In solder were used as leads for electrical characterization. These provided very-low-
resistarice ohmic contacts to the film surface. In the transition region, data points were
taken at 0.2 K intervals to facilitate accurate analysis. The normal-state conductivity
crc_,c for T < 110 K was determined by extrapolation of the regression-fitted data in
the range 110 K < T < 180 K.

3. Results

The microstructure of the two coevaporated films (C1 and C2) were completely differ-
ent although they were deposited and annealed under apparently identical conditions.
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Film C1 has long cylindrical pains of about 0.25/Jm diameter. The grains are highly
oriented with their a-b plane along the film plane. Film C2, however, has a basket-
weave-type grain morphology with an aspect ratio of about 16 in the film plane. The
x-ray diffraction spectrum shows that the film has both c-axis- and a-b-axis-aligned
grains along the film normal. The a-b-axis-aligned grains, however, were restricted to
the top surface of the film [8]. The laser-ablated film (L) also shows a highly oriented
cylindrical grain morphology similar to that of film C1. The film has a mirror-like
smooth surface morphology, indicating that the surface roughness is much less than
those of the coevaporated films.
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Figure L The variation in the resistivities p of the three films with temperature T.

The variation in the reslstivities p with temperature of the three films C1, C2 and
L shows a sharp transition into the superconducting state (figure 1). The transition
width, defined as the width at half-maximum of the temperature-derivative curve, is

about 0.4 K for all the films. The parameters that are important in any systematic
study of Act are

(i) determination of the mean-field transition temperature T_ r and
(ii) determination of the background or normal-state transport contribution to the

overall conductivity.

It has been shown that the inflection temperature in the p--T curve can be
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approximatedasthe mean-field transition temperature [9, 10]. This criterion was
used in the determination of T mf for the films and is given in table 1.

Table 1. The zero-resistance temperature To(0), mean-field transition temperature T_ _

and the transition width ATe(0) to zero-resistance state of the three films.

T_(O) 7_m_f ATe(O)
Sample (K) (K) (K)

CI 91.1 91.5 0.4

C'2 90.5 91.4 0.5

L 90.2 90.5 0.3

4. Discussion

The low-temperature superconductors are of strong-coupling BCS type and their
normal-state behaviour can be estimated using a linear temperature dependence for
p based on the conventional electron scattering mechanisms. However, the scattering
mechanisms in the normal state of the oxide superconductors are not clearly known.
Both the Fermi-liquid-based models which predict a linear temperature dependence
and the non-Fermi-liquid-based models are currently used to fit the normal-state
transport behaviour [11]. According to the non-Fermi-liquid-based RVB model, the
charge carriers are assumed to be confined to the Cu-O a-b planes of the crystal,
thus leading to metallic conduction behaviour along the planes and phonon-activated
hopping conduction in between the planes. The overall resistivity p(T) in such an
hypothesis is given by an expression of the form

p(T) = aT -1 + bT (2)

where a and b are temperature-independent constants. In the present analysis, the
p--T data of all the films were fitted to both the linear temperature dependence
of the type p(T) = p(O) + bT and the RV8 dependence, equation (2), using the
least-squares regression-fitting routine in the range 110 K < T < 180 K. It was
found that the best fit to film C1 was the linear relation while that for films C2 and

L was the RVB-type relation. However, only the linear coefficient b of the two films
C'2 and L is in reasonable agreement with that predicted by the RVB model. The

values of a in equation (2), 442.1 and 925.8 /_ft cm K, are orders of magnitude
lower than the predicted values. The linear temperature coefficients b for the three

films are 0.186/_fl cm K-1, 0.294 _fl cm K -_ and 1.584 _fl cm K -l, respectively.
These values are well within the average values observed for single crystals [2, 3] and
indicate the phase purity of the films. Using the simple Drude relation for metallic
conduction given by p(T) = (3rrh/2)/e2k_l where l is the quasi-particle mean free
path, e the electron charge, h the Planck constant and kv = 4.46 x 107 cm -_ [12]
the Fermi wavevector, the 'metallic parameter' kvl can be estimated for the three
films. These were found to be 17, 7 and 14 for films CI, C2 and L, respectively, at
120 K, indicating that all the three films are very much on the metallic side of the
Ioffe-Regel limit. This clearly shows that the microscopic conduction mechanism in
these materials above Tc is not completely understood, although a mathematical fit
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to the RVB model can be obtained. Recently, on the basis of mid-infrared phonon
spectroscopy [13] and transport [14] studies on polycrystalline pellets it has been
reported that the contribution from fluctuations persists up to temperatures as high
as 2T c. This corresponds to the 'fluctuation onset' temperature, indicating that the
lifetime of the superconducting fluctuations is finite and large even at 2T o for which
there is no direct experimental evidence at present.

The excess conductivity Aa(T) = Orexp(T ) - _c.l¢(T) determined using the re-
lation ta(T) = p(O) + bT for film C1 and equation (2) for films C2 and L was
found to diverge sharply as T approaches T mr. This is in qualitative agreement
with the conventional theory which predicts a divergence of the magnitude of the
order parameter fluctuations at T close to T_mr. The critical temperature region t
in which the TDGL theory is not applicable can be estimated using typical values for
YBa2CuaOT; T_nef -" 91 K, the zero-temperature upper critical field H¢2(0 ) = 674 T
and the OL parameter K = 200 [15], and therefore t is found to be about 2 x 10-L
For t t> 2 x 10 -2, Aa(T) can in principle be determined using equation (1) (power-
law dependence of Ao- on t). Although the rate of decay of the fluctuating su-
perconducting pairs is explicitly considered in obtaining equation (1), their effect
on the quasi-particle conductivity is not considered. An additional term has been

proposed to equation (1) by Maid and Thompson (as quoted by Skocpol and Tin-
kham [16]) to account for the effect of fluctuations on the quasi-partide conductivity
and it was found to be four times equation (1) in the case of 3D conduction and
(e2/8hd)[(t - 6) -x In(t/6) -1] for 2D conduction, where 6 is the pair-breaking pa-
rameter and d the film thickness. The criterion for 2D conduction is d/_(T) ,¢_ 1
where _(T) is the superconducting coherence length. In the present case, even
d/_(O) for all the three films is much greater than unity and hence 2D conduction

can be completely ruled out. The addition of an extra term to equation (1) changes
only the magnitude of Aa(T), leaving the power-law temperature dependence in-
tact. In the present work, however, Ao(T) for all the three films determined from
the experimental data does not show a power-law dependence on t as predicted in
the range 9x 10 -4 < t < 4x 10-I; this can be dearly seen in figure 2. It has
a continuously changing curvature which has been observed earlier. However, the
previous reports have inferred changes in the dimensionality of electrical transport
on the basis of linear fits to small portions of the curve [2].

The above method of analysis relies on the accurate determination of T_cf. In the
case of oxide superconductors, the fluctuation effects on the conductivity are spread
over a large temperature range compared with the conventional superconductors
because of their extremely short coherence length _ and the high value of To(0 ).
Hence the accurate determination of T_c r is ditficult. An alternative method of
analysing the fluctuation effects which does not depend on Tcmr has been used in
the case of TI-Ba-Ca-Cu--O thin films and single crystals [17, 18]. According to this
method, equation (1) can be rewritten as

[Aa(T)]-I/, -. D-II,_[(T_ Tmf)/T_f I (3)

where the constant D is given by e_/32/i_(0) for 3D conduction and e2/16hd for _.D
conduction. Differentiating and rearranging equation (3) gives

lnI-d(Acr)/dT] = ln(D-]/'_/Tc) + (1 + l/T/) ln(Acr). (4)
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The dimensionality r/can be deduced from the slope of the ln[-d(A_r)/dT] venus
ln(Aa) plot and using equation (4). Figure 3 shows Aa plotted according to this
modified scheme. It can be clearly seen that even this alternative methodology which
is independent of Tcmr does not give conclusive evidence for the dimensionality of
conduction in these films. Even according to this modified scheme of analysis the

data exhibit a continuous curvature in the whole range and the dimensionality can be
inferred only by fitting small portions of the excess conductivity. The recent electrical
transport, mid-infrared phonon spectrum and heat capacity studies have clearly shown
that the 'onset' temperature for fluctuations can be as high as about 2T c. The onset
of fluctuations in the electrical transport behaviour has been attributed to the quasi-2D
Maki-Thompson correction factor which has a logarithmic temperature dependence
[3, 14]. The Act-values in the present work, however, could not be fitted satisfactorily
to a logarithmic temperature dependence. The Ac,(T) data are repiotted as shown
in figure 4 and it can be clearly seen that Ao(T) has an exponential dependence on
t: Act(T) oc exp(t -c') where c_ is the slope in the range 9 x 10 -4 < t < 10 -] for

all the three films. This clearly illustrates two important points.

(i) The TDGL theory underestimates the critical temperature region by at least an
order of magnitude.

(ii) The mean-field approximations are not valid in the case of YBa2Cu3Or_ z.

The underestimation of the critical region has been attributed to the large con-
tribution of the higher-order fluctuation corrections [19]. In the critical region, Ao
is predicted to diverge as t goes to 0 with a temperature dependence similar to that
in the mean-field region but with an exponent different from rl based on the 3D XY
model [20]. The results of the present work, however, cannot be understood even
according to these models.

260



10 t
°$_ aA_ _ •

• o Ooo% •
o go

J

_Oo .... • ........ , ........ , .. • ,

10 4 10" 10 -_

Figure 4. Log-normal ph.t of A_ _a_rsus t, showing the _ponential temperature depen-

dence o( A_ for all the films in the range 9 x 10 -4 < t < 10 -l.

5. Conclusions

The macroscopic and microscopic properties of the oxide materials in their supercon-

ducting state are being extensively studied. Many models have already been proposed

to explain these properties. However, the normal-state behaviour remains the least

studied to date. The only phenomenological model that has been proposed to explain

the normal-state electron transport behaviour is the RVB model. The results of the
present work indicate that it is insufficient to explain the transport behaviour above

T c. The finear and hopping coefficients obtained for the two films which obey the RVB

expression for conductivity are much lower than the values predicted by the model.

The excess conductivity in the mean-field region of the three films studied does

not obey the temperature dependence predicted by the TDGL theory. Even though
such a behaviour has been observed before, the results are still fitted to the TDGL

theory and the dimensionality of the electrical transport determined. However, we
find that the excess conductivity is better represented by an exponential relation and

that there is no model at present, macroscopic or microscopic, which can explain this

type of behaviour. Hence the dimensionality of electrical transport is still inconclusive.

The onset temperature for fluctuations observed in the present work, t _ 0.1, agrees
with that observed by Regan et al [4], indicating that the length of the critical region

is larger than that predicted by the theory. However, the functional dependence on

temperature is found to be different.
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EIIipsometric study of ambient-produced overlayer growth rate

on YBa=Cu307_x films

Robert M. Sieg
Cleveland State Univenlty, Cleveland, Ohio 44115

Samuel A. Alterovitz and Joseph D. Warner
NASA Lewis Research Center, Cleuelana[ Ohio 44135

(Received 28 August 1992; accepted for publication 18 January 1993)

An ellipsometric study of ambient-reaction-produced BaCO3 overlayer growth on laser-ablated

YBa2Cu3OT_ x is presented as a function of time. The effects of the anisotropy of YBa2Cu3OT_x

on the eUipsometric data inversion process axe discussed, and it is concluded that with certain

restrictions on the data acquisition method, the anisotropic substrate can be adequately modeled

by its isotropic pseudodielectric function for the purpose of overlayer thickness estimation. It is

found that after an initial period of rapid growth attributed to the chemical reaction of the
exposed surface bonds, the BaCO 3 overlayer growth is linear at 1-2 ,_ per day. This slow growth

rate is attributed to the complexity of the BaCO 3 forming reaction, together with the need for

ambient reactants to diffuse through the overlayer.

L INTRODUCTION

Previously, 1 we have reported results of ellipsometric

measurements of the pseudodielectric function of

YBazCu3OT_ x (YBCO) prepared by laser ablation and co-

evaporation. We also reportedobservinggrowth of a trans-
parent ovedayer on the laser-ablated films. This overlayer

growth has been observed by other experimenters 2 and has

been determined to be BaCO 3 resulting from interaction

between YBCO and CO2 in humid air, 3-5 a conclusion with

which we concurred. In this article we report systematic

ellipsometric measurements of the growth rate of this over-
layer on laser-ablated films exposed to air. We discuss the

effects of the anisotropy of the YBCO suhstrate on the
ellipsometric inversion process and show that by fixing cer-

tain ellipsometer settings the effects of the anisotropy can
be minimized. We further show that under these restric-

tions the YBCO substrate can be approximated by its iso-

tropic pseudodielectric function for the purpose of estimat-
ing the transparent overlayer thickness. Finally, we present

the results of the overlayer growth time dependence mea-
surements and discuss the results in light of the chemical
mechanism which is believed to create the overlayer.

II. EXPERIMENT

Samples were prepared by laser ablation | using an ex-

cimer laser operating at 248 nm, energy density of 1.5
J/cruZ/pulse, with 4 pulses per second. The target was a
sintered 25-mm-diam YBCO pellet located 8 era from the

sample at 45" to the laser beam. The beam was rastered up

and down 1 cm over the target using an external lens on a

translator. The films were deposited on strontium titanate

(SrTiO3), zirconium dioxide (ZrO2), and lanthanum alu-
minate (LaAIO3) substrates, which were mounted on a

stainless-steel plate heated to 775 "C. The oxygen pressure

was 170 mTorr throughout the deposition. X-ray diffrac-
tion showed the films to be c-axis aligned. Comparison 1 of

our measured pseudodielectric functions with published

data 6 also indicated our films closely approximated c-axis-

aligned YBCO single-crystal material. Critical tempera-
tures for the films were -86 K. Film thicknesses averaged
about 3000 _.

The rotating analyzer spectroscopic ellipsometer sys-
tem 7 reflects monochromatic linearly polarized fight off the

sample and measures the complex reflection ratio p:

<')

where Ep., and Es. r are the parallel and perpendicular com-
ponents (with respect to the plane of incidence) of the

reflected electric field intensity, Ep.# and E_t are the corre-
sponding quantities for the incident light, and 0 is the in-

cident light polarization azimuth, i.e., tan(O)=EsjEp.i.
The rotating analyzer elfipsometer actually measures the

Ep.,/E_, ratio, while the Es./Ep.i ratio is determined by a
fixed polarizer azimuth 0. Two films, identified here as

samples A and B, both deposited on strontium titanate,
were selected for systematic monitoring of overlayer

growth. These samples were cleaned with a bromine etch
(1% Br/ethanol solution for 30 s followed by ethanol and

blow drying) _ to remove the overlayer, and were measured

less than 10 rain after cleaning, and periodically thereafter.

Both samples were left mounted throughout the growth

monitoring period to maximize precision. The samples

were monitored for a period of 4-10 days after cleaning,
and were exposed to the air throughout the monitoring

period. Each sample was etched two different times to de-
termine repeatability, giving four etches in all. Addition-

ally, sample A was mechanically cleaned and measured

periodically over a period of 106 days to examine longer-
term overlayer growth. Here the sample was not left
mounted continuously but rather mounted periodically for

measurements; hence the precision is poorer for this long-

term monitoring. Between measurements, the sample was

left exposed to air. Overiayer growth measurements were
taken at a fixed angle of incidence: 65" for the first etch of

© J. Appi. Phys. 73 (9), 1 May 1993. Reprinted, with permission, from American Institute of Physics.
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FIG. 1. Experimental {¢1) for several representative scans of sample A
taken before and after the tirst etch.

each sample and 70" for the second etch and also for the
long-term monitoring of sample A; the wavelength range
varied slightly but was always within the range 3200-8000

(1.55-3.87 eV). The polarizer azimuth 0 was held con-
stant at 24" for the first etches and also for the long-term
monitoring of sample A; 20" was used for the second etch
of each sample. These polarizer values have been shown to
provide maximum precision, i.e., I pl =.tan(0). 8

III. RESULTS

Figure 1 shows (el), the real part of the pseudo-
dielectric function, for several representative measure-
ments taken before and after the fast etch of sample A. The

pseudodielectric function is the apparent dielectric func-
tion of the sample, i.e., the dielectric function of an equiv-
alant isotropic bulk material calculated using an isotropic
two-phase (ambient/substrate) model. 9The pseudodielec..
tric function (61 is obtained directly from the ellipsomet-
rically measured complex reflectance ratio p, using the for-
mula 9

(6) =eo[sin2(¢) +sin2(¢)tan2(¢) /I--p12]_1+p/1 (21

In the above equation 6o is the dielectric function of the
ambient (Ea= 1 for air), _ is the experimental angle of
incidence, and p is the eUipsometrically measured quantity
defined previously. For an ideal two-phase system, (6) =tj,
the substrate dielectric function. However, (2) defines the

pseudodielectric function (61 for all cases. The lowest
curve in Fig. I is the measurement taken prior to the bro-
mine etch. The highest carve is the measurement taken
immediately after the etch. The curves in between are mea-
surements taken at later times. The magnitude of (611 de-
creases with increasing time. The measured quantity (_) is
expected to be a continuous function of overlayer thick-
ness, and computer simulation using an isotropic substrate
whose pseudodielectric function was similar to our mea-
sure (6} (Ref. 6) showed that the magnitude of the real
part of the pseudodielectric function (6 l) in our range of
measurement decreased with increasing overlayer thick-

ness, as shown in Fig. 2. This is in accordance with our

2.0

N

1.0

0.0

Cz
I l I I ) I I

1.50 2-I0 2.70 3.30 3.90

Photon En_,gy (eV)

FIG. 2. Computer simulation of overlay_ (n=1.55, k=0) growth on

anisotropic substrate. (fl) is calculated at angle of incidence 70". The
curve labeled 0 ._. corresponds to the actual substrate spectrum, which is
taken from Re/'. 6.

measurements: The large increase in (el) magnitude im-
mediately after etching indicates removal of the overlayer,
and the steady decrease in magnitude as time increases
indicates overlayer growth. Similar results are seen for the
other growth monitoring measurements. Figure 3 shows
the same information for the second etch of sample B in a
different form. Here the real part of the pseudorefractive
index (n) ((6)=(n) 21 at incident light wavelength of
4900 _ is plotted as a function of time. Again, a steady
decrease in the magnitude of the real part with increasing
time is seen. This effect of a transparent overlayer on the

real part of (n) was also verified by computer simulation.
Both the actual measurement of (_11 and the computer
simulations of (6_) show that the effect of the overlayer is
much more pronounced at higher photon energies (lower
wavelengths). This is because the low-energy light pene-
trates deeper into the substrate_ making it less sensitive to
the overlayer.

IV. DATA ANALYSIS AND DISCUSSION

From the pseudodielectric function of single-crystal
YBCO (Ref. 6) we estimate the light penetration depth in
the range of measurement to be under 750 ]_, making the

1.655

1.650'

1.645-

1.640 i i l 11000 5O
_me (Hour)

FIG, 3. Measured real part of (n) at light wavelength 4900 1_ Is •

function of time for sample B, second etch.
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YBCO film the effective substrat¢ for ellipsometric pur-
poses. To obtain estimates of the overlayer thicknesses, it is
necessary to invert the ellipsometric data. Because of the
mathematical complexity of this inversion process, a least-
squares fit is usually performed? ° A model of the system

must be formulated, and appropriate model parameters op-
timized in the least-squares sense with respect to the mea-
surement. Such a model typically consists of a layered
structure atop an optically thick substrate. Abrupt inter-
faces are assumed, and layers are assumed to be isotropie

and homogeneous with regard to thickness and optical
properties. H For overlayer measurements, the pseudodi-
electric function of the specific substrate to be studied is
typically measured prior to overlayer deposition after suf-
ficient cleaning to approximate the two-phase model. The
overlayer is then introduced and the sample remeasured
and analyzed with a three-phase (ambient/overlayer/
substrate) model, using the pseudodielectric function of
the initial uncontaminated surface measurement to model

the substrate optical properties. This process provides a
built-in correction for imperfections in the substrate which
would not be accounted for by the use of standard refer-
ence data? Additionally, if the sample is left mounted on
the ellil_ometer between initial measurement of the sub-
strate pseudodielectric function and subsequent measure-
ment of the three-phase system, as was done in this study,
effects of substrate inhomogeneity are also minimized by
guaranteeing that the optical constants used to model the
substrate are optimum for the specific location at which
ovedayer measurements are being taken.

In the present case, the above procedure is complicated
by the fact that YBCO is a biaxinlly anisotropic material, t2
The pseudodielectrie function is calculated assuming an
isotropic two-phase system, and thus it cannot completely
describe the optical properties of the anisotropic substrate,
which should be described by a dielectric tensor.l_ To in-
vestigate the possible effects of this anisotropic substrate on
the measurement of a transparent overlayer, we took two
approaches: First, we performed computer simulations of
untwinned single-crystal YBCO to determine which sys-
tern parameters are affected by the anisotropy and to what
degree. This provided information on how best to set up
the overlayer measurement to minimize potential inaccu-
racies caused by the anisotropy, as well as providing
bounds on the anisotropy-induced error. Second, we per-
formed experimental measurements to identify to what de-
gree the anisotropy effects predicted by computer simula-
tion for untwinned single-crystal YBCO were actually seen
in the laser-ablated YBCO films. These films are not single
crystals but rather consist of microscopic grains of c-axis-
oriented YBCO crystals with the a and b crystal directions
aligned with the strontium titanate substrate crystal direc-
tions. 2'12There will be a high degree of twinning in the a-b
plane. _12We expect this type of crystal structure to reduce

the observable effects of the anisotropy.
The computer simulations of ellipsometric measure-

merits of untwinned single-crystal YBCO were based upon
the biaxial substrate m_lel developed by Graves.ll't_ This
model calculates the complex amplitude reflection coeffi-

cients for a biaxially anisotropie substrate oriented such
that one crystal axis is perpendicular to the sample surface
while the a second crystal axis is perpendicular to the plane
of incidence of the light. In the present case, the YBCO
films are predominantly c-axis aligned, so that the c axis is
perpendicular to the sample surface as required by the
Graves model. The dielectric tensor components of YBCO
were taken from Kircher et al. 12 Simulations were done

using the c axis perpendicular to the interface and either
the b axis perpendicular to the plane of incidence (abc
orientation) or the a axis perpendicular to the plane of
incidence (bac orientation). Physically this corresponds to
measurement of an untwinned single crystal of YBCO, for
which the maximum observable anisotropy effect would be
expected. Comparison of the pseudodielectric function of
abc-oriented simulations with the pseudodielectric function
of bac-oriented simulations shows the effect of a 90* rota-

tion on the measurement of such a single crystal. We per-
formed these simulations at an angle of incidence of 65",
and found that the difference between the abc-oriented

crystal pseudodielectric function and the bat-oriented crys-
tal pseudodielectric function is enormous, with differences
between the real and imaginary parts of (el of the two
orientations exceeding the absolute magnitude of these
quantities. For example, at the wavelength 5500 A,
(El) =3 for the abc orientation, while (El)= 1 for the bac
orientation. Additionally, the shape of the two spectra dif-
fered significantly. In contrast, our measurements of laser-
ablated YBCO films as a function of sample azimuth
showed variation in (et) and (e2) of less than 0.3 all cases,
and the shape of the spectra measured at different sample
azimuths was very similar. The dependence of the ellipso-
metric measurement on sample azimuth has been reduced
significantly by the complex crystal structure of the laser-
ablated films, but it is still detectable, as shown by these
measurements.

We next simulated the pseudodielectric function of un-
twinned single-crystal YBCO with no overlayer at various
angles of incidence. Our simulations showed that the
pseudodielectric function is a strong function of the ellip-
someter angle of incidence for both the abc orientation and
the bac orientation, with variation in spectral magnitudes
greater than 15% for incident angle variation from 65" to
75".The variation of the pseudodielectric function for each
orientation was in opposition: the real part of (n) de-
creased with increasing angle of incidence for the abc ori-
entation, whereas it increased with increasing angle of in-
cidence for the bac orientation. For comparison, we
measured numerous films at various angles of incidence.
The measured pseudodielectric function was found to vary
by 5% or less. Again, the effect of the anisotropy has been
greatly reduced by the complex film structure, but has not
been completely eliminated.

In our third simulation, we determined bounds on the
error that can be expected in using an isotropie three-phase
model to analyze a system with an anisotropic snbstrate,
Using the anisotropie model, we simulated ellipsometric
data for various overlayer thicknesses (overlayer n----1.55
k--0) at an angle of incidence of 70*. This generated data
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FIG. 4. Computer simulation using a three-phMe isotropic model to

analyze a system with an an[sotropic substrate, abe: c axis perpendicular

to interface, b axis perpendicular to plane of incidence; bat:, c axis per-

pendicular to interface, a axis perpendicular to plane of incidence. Ref-

erence is calculated isotropic thickness equal actual thJckne=.

was then inverted using the isotropic three-phase model to

obtain the overlayer thickness, using the simulated

pseudodielectric function of the anisotropic substrate with
no overlayer as the effective isotropic substrate. Simulation

results are given in Fig. 4. The reference line in this graph

is the ideal result, i.e., the overlayer thickness determined
by the isotropic model exactly equals the overlayer thick-

ness simulated on the anisotropic substrate. The absolute
error is 20% or less, and the calculated thickness is directly

proportional to the actual thickness. Thus, use of the iso-

tropic model in this case may result in some error in the

absolute growth rate, but the shape of the growth curve

will be correct. As with the angle-of-incidence variation,
the effects of the two orientations abe and bac oppose each

other, with the abe.oriented crystal resulting in an under-
estimated thickness while the bac-oriented crystal results in

an overestimate. In view Qf our previous results showing

significant reduction in the observed effect of YBCO an-

isotropy in the laser-ablated films, the boundaries shown in
Fig. 4 are expected to greatly overestimate the actual over-

layer measurement error.

One potential effect of substrate anisotropy on ellipso-

metric measurements that cannot be studied using the

Graves model is the effect of off-diagonal components of

the reflectance matrix which result when the crystallo-

graphic axes are not aligned with the optical axes as re-

quired by Graves model. In general, the relationship be-
tween the incidence electric.field vector and the reflected

electric-field vector is given by '_

[E_,j (3)

Equation (3) states that the reflected complex amplitudes
are related to the incident complex amplitudes by a 2×2

reflection matrix. This matrix is a property of the sample
and is a function only of wavelength and angle of inci-

dence. For either an isotropic system or a biaxiaHy aniso-

tropic system with the axial alignment specified for Graves

model Rp.j=Rs_=O and the ellipsometrically measured ra-
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FIG. 5. Results of isotroplc three-phase modeling of sample A, first etch
growth monitoring. The plotted ovexlayer thickness is the only model
parameter.

rio p reduces to p=Re_,/R_ 11 Thus, p is a function only
of the reflection matrix, which is a property of the sample.

In the case of a biaxialiy anisotropic system in which the

optical axes and crystallographic axes do not coincide, R_p

and Re_, are not generally zero. The measured ratio p can
be written as

(z,.q
P=L&,/_-_.,/=e_,+R_t_=(e) _(o). (4)

The el]ipsometric measurement in this case is a function of

both the reflectance matrix and the polarizer azimuth e.

We measured the eft'oct of the polarizer azimuth setting
both on a laser-ablated Y"BCO film and also on an isotropic

reference sample, The reference sample was an amorphous
carbon fill on silicon, similar to samples described in Ref.

7. The film was nearly transparent (k<0.13) with thick-
ness _ 1950/_. For such a sample the amplitude and phase

of p oscillates slowly (one complete cycle in our spectral
range), so that we could locate spectral regions where the

measured p of the YBCO film could be compared with

measured p values of similar magnitude and phase for an

isotropic system. The polarizer azimuth was varied be-
tween 20" and 70.. In this range, the variations of p for the

isotropic sample are within the experimental error. For the

YBCO film the variations in (e 1) and (e 2) are less than

8% of the amplitude between polarizer values of 20. and

70". Between 20" and 45" the changes are less than 4%.

Again, a small but observable effect of the anisotropy is
seen in the laser-ablated film.

Based upon the above results, we used the measure-

ment and analysis procedure outlined previously for iso-

tropic systems, with the additional constraints of using a

fixed angle of incidence and a fixed polarizer azimuth, so as

to avoid any measurement variations not directly attribut-

able to surface changes. Also, since each sample was left

mounted throughout the overlayer growth measurement,

the sample azimuth remained unchanged. The overlayer
was modeled as a transparent dielectric material with re-
fractive index of !.55, I and the YBCO substrate was mod-

eled by the pseudodielectric function measured immedi-

ately after etching, The resultant overlayer thickness
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TABLE I. Results of linear regression analysis applied to growth mcmio

tot'ins results analyzed by an isotropic three-phase mode]. Only measure-
rne_ts taken after 12 h or longer were included in the lit, R is the corre-
lation coefficient; R _ "_I is a perfect fit, m cleno_es mechanically cleaned.

Sample Etch Ho_rs Rate" Intercept s R

A I 266 1.62 5.03 0.983

A 2 95 2.12 6.62 0.983

A m 2557 0.95 2.29 0.9111

B 1 214 2.01 1.80 0.985

B 2 192 0.87 6.42 0.937

q'he ratein ]u_da_.
bTheinterceptin A.

versus time plot for the first etch of sample A is given in

Fig. 5. Two distinct regions are seen. For about the first 5
h the overlayer grows rapidly. When the overlayer reaches
_5/It the growth slows and becomes linear, with a growth
rate of 1.62/i, per day, as determined by linear regression.
Results for the other three etches were similar in shape.

The four etch results plus the long-term monitoring of
sample A a_er mechanical cleaning were each fitted to a
linear model for overlayer measurements taken after 12 h,
i.e., in the linear region. The results are shown in Table I.
In this table, the intercept is the y intercept of the regres-
sion fine; this gives an estimate of the thickness reached in
the initial rapid growth region. The initial growth period
stops at about 2-6/_, i.e., about one monolayer. In the
linear region, the growth rate is in the range 1-2 ]_ per day,
which is below one monolayer per day.

The type of growth curve observed here on YBCO is
different from the logarithmic curve typically observed in
the oxidation of semiconductors, such as the oxidation rate
of sUicon and gallium arsenide measured by Lukei. 14In the
case of oxidation, the ambient reactant O 2 is plentiful, and
the ovedayer growth rate is controlled by the diffusion rate
of oxygen through the growing oxide overlayer. In the

present case, the YBCY) ovedayer is believed to be pro-
duced by the following chemical reactions: a

3H20 + 2YBa2Cu3OT-. Y2BaCuOs + 3Ba(OH) 2

+5CUO+0.502, (5)

Ba (OH)2 + CO2-'* BaCO3 +H20-

These reactions are clearly more complicated than a simple
oxidation reaction, and also involve two reactants, H20

and CO2, which make up a much smaller molar fraction of
air than does 02 . The growth curve observed here is quite
similar to the growth rate of silver sulfide tarnish on silver
exposed to room air, ]1 where an initial period of rapid
growth is seen up to 2 ,/L,after which the growth rate slows
and becomes linear at _4/_ per day.

Variations in the ultimate YBCO overlayer thickness
reached during the initial rapid growth phase are probably
due to two factors: variations in surface quality, and dif-

ferences in the delay time between etching and the initial
measurement of the substrate dielectric function. This lat-

ter factor will be particularly significant if the initial
growth curve shape is logarithmic; any overlayer growth
that occurs prior to the initial measurement will be ab-
sorbed into the effective substrate measurement. Variations

in the linear region slope may be due to variations in at-
mospheric conditions such as humidity which would affect
the availability of the limiting reagents in Eq. (5). As a
final comment, we note that the final measurement at 2557
h for the mechanically cleaned long-term monitoring
of sample A gave a thickness of 100/_ as analyzed by the
isotropic three-phase model. This measurement is the mea-
surement labeled "Before etch" on Fig. 1; the effect of the
removal of this 100 _ overlayer by the bromine etch is seen

very clearly in the pseudodielectric function.

V. CONCLUSIONS

We have measured ellipsometficafiy insulator over-

layer growth on laser-ablated YBCO thin films due to ex-
posure to air. After formation of an initial monolayer, the
growth proceeds linearly and rather slowly, e.g., 1-2/_. per
day. This information should be useful in appraising the
effect of air exposure on various sample processing steps,
such as making electrical contacts. In the process, we con-
sidered the effects of substrate anisotropy on overlayer es-

timation and have presented a method of estimating over-
layer growth on an anisotropic substrate.
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Abstract

The magnetic flux relaxation behavior of YBa_,Cu3OT_, thin film on LaAIO3 for HIIc was studied in the range
4.2-40 K and 0.2- 1.0 T. Both the normalized flux relaxation rate S and the flux pinning energy Uo exhibit a weak
field dependence at low temperatures (T <_20 K). Within this regime S and Uo are observed to increase continuously
from 1.0 × 10-2 to 2.0 × 10 -2 and 45 to 130 meV respectively, as the temperature T increases from 4.2 to 20 K.
While S is observed to decrease in proportion to kT for T _<20 K, it does not extrapolate to zero at T = 0, which
is in contradiction to the thermally activated flux creep and vortex glass models. This behavior is discussed in terms
of the athermal quantum tunneling of flux lines. The magnetic field dependence of Uo, however, is not completely
understood.

I. Introduction

In type II superconductors the pinning of magnetic
flux lines is responsible for the lack of dissipation

during the flow of high current densities. The pinning is

caused by various types of defects, i.e. grain

boundaries, twins, point defects and inhomogeneities.

The observation of a high degree of mobility of these
flux lines in the oxide superconductors [1-3] has stimu-

lated many theoretical studies and has led to the pro-
posal of several models. According to the conventional

thermal flux motion model [4, 5] the magnetization

relaxes logarithmically with time t for t < t,, where t_,

is a crossover time given by tcr = thop exp[U/kT], thoo is
the flux line hopping time (10-6-10 -_2 s), U is the net

flux pinning energy, k is the Boltzmann constant and T

is temperature. At t > t_r, or for high 7", the motion of

flux lines attains a steady state and the magnetization

relaxes exponentially with t [6]. However, the observa-

tion of logarithmic decay even at large values of T and
the non-linear behavior of the relaxation rate has led to

*Presented at the 18th International Conference on Metallurgical
Coatings and Thin Films, San Diego, CA. USA. April 22--26, 1991.
In error, an unrevised version of this paper was published in Thh_
Solid Fihns. 206 (1991) 137- 142.
Correspondence should be addressed to: Dr. M. A. Stan. Mail Stop

54-5, NASA Lewis Research Center, Cleveland, OH 44135, USA.
*Present address: Department of Metallurgy. Indian lnstilute of

Technology. Powai. Bombay 400 076. India.
:Department of Physics, Kent State University. Kent. OH 44242.

USA.

many alternative models for the nature of the pinning

energy U [7-9].

An alternative description of dissipation in high tem-

perature superconductors is the vortex glass model

[10, Ii]. In this model there is a truly superconducting
state in the presence of high magnetic fields below the

glass transition temperature. Within this regime the

sample voltage is predicted to vanish exponentially with
decreasing current. Recently, the vortex glass model has

been used to explain the apparent temperature indepen-

dent value of S = 0.02-0.035 reported by many re-

searchers [ 12].

In the present work, the relaxation of screening-cur-

rent-induced magnetization in a YBa2CusOT_,. thin
film has been studied as a function of temperature T

and external field H. The magnetization is found to

relax logarithmically up to 104s for T as high as

0.45 Tc, where T_ is the superconducting transition

temperature. S appears to saturate with increasing tem-
peratures for T > 20 K. This observation is consistent

with the predictions of the vortex glass model; however

the [ln(t)] -_ time dependent relaxation appropriate to
the model is not observed. For T _< 20 K, S is observed

to decrease linearly with decreasing T but does not

extrapolate to zero at T = 0. The linear dependence of
S on T in the Iow-T region is consistent with both the

thermally activated creep and vortex glass models. The

finite value of S at T = 0 obtained by extrapolation

cannot be explained by either model and is discussed in

terms of "quantum tunneling" or the "athermal flux

motion" model [13]. We also observe Uo to decrease
with increasing H for all temperatures and fields used,

Reprinted with the kind permission of Elsevier Sequoia, Lausarme, Switzerland, publishers of the journal Ttfin Solid Films,
no. 217, pp. 156-160.
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although the 1/H dependence suggested by Yeshurun

and Malozemoff [1] is not observed.

2. Experimental methods

The YBa2Cu3OT_._ thin film, approximately 0.3 pm

thick, was deposited by the pulsed laser ablation tech-

nique onto a heated (100) LaA103 substrate. The film

texture was determined by the standard 0-20 scan and

rocking curve, and shows that the grains are preferen-

tially aligned with their c-axis along the plane normal.

The film has a smooth surface and the average grain

size, determined by scanning electron microscopy, is

approximately 0.25 pro. The superconducting transition

temperature To(0) determined by the standard four

probe d.c. technique is 88.5 K with a transition width of (a)
ca. 1.0K.

The magnetization and magnetic flux relaxation was

studied using a commercial SQUID magnetometer.

Hysteresis loops were made at various temperatures for ,'"
Hllc, from which the critical current Jc was determined, o_
The values at 4.2 K and 77 K were 2.4 x 107A cm -2 "_"

and 1.0 x 106 A cm -2 respectively. Such values are typi-

cal of high quality films. The data collection procedure
o

is described in detail in ref. 3. The diamagnetic transi- "_

tion temperature determined from the field-cooled mag- 'd

netization of 2 mT applied along the c-axis was found -a

to be 88.5 K and is the same as that determined by the ._
electrical transport method.

3. Results

The relaxation of the screening-current-induced mag-

netization at H = 0.2 T, 0.4 T, 1.0 T and 2.0 T applied

perpendicular to the orthorhombic ab plane of the
crystals was studied in the temperature range 0.05 T¢ <

T< 0.45 T_. The magnetization was found to relax

logarithmically with t up to 104s at all the temperatures

and fields studied. The relaxation rate dM/d In t is

shown in Figs. l(a) and l(b) as a function of T and H

respectively. It may be observed in Fig. l(a) that dM/d
In t exhibits a maximum at approximately 10 K. Such

behavior has been observed in grain aligned powdered

YBa2Cu3OT_ x specimens [2] and attributed to partial

flux penetration when H < H*, where H* is the field at

which the magnetization reaches the maximum at a
given temperature. In our relaxation measurements,

however, H > 2.5H* for all temperatures and fields
used. We therefore believe the films are fully penetrated

by the flux and that the films are in the critical state.

The relaxation rate dM/d In t normalized by the initial

magnetization Mo at to eliminates the uncertainties as-

sociated with the determination of the demagnetization
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Fig. I. The logarithmic relaxation rate dM/d In t of the screening

current induced magnetization: (a) As a function of temperature T at

various fields A, 0.2T; ©, OAT; O, 1.0T; Ul, 2.0T; (b) as a

function of external field H at various temperatures wI, 4.2 K; Z_,

10 K; ©, 20 K; O, 40 K. The lines connecting the data points are aids

to the eye.

factor, and allows the possible determination of the

pinning energy Uo. In analyzing the results of the present

work, to is taken to be 103 s so that the relaxation is in

the logarithmic regime. Figures 2(a) and 2(b) show

the normalized relaxation rate 1/M o dM/d In t = S as

functions of T and H respectively.

4. Discussion

In a typical relaxation measurement, the net flux

pinning energy U is zero at t = 0 and increases rapidly

with t. The time dependence of U is implicitly contained
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Fig. 2. The relaxation rate normalized by the initial magnetization
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field H. See caption of Fig. I notation.

of T when Uo >>kT ln(to/thoo). Since Uo must go to zero
as T ---. To, it also predicts a divergence or an upward
curvature for the S curve as T increases. From Fig. 2(a)
it can be seen that S is approximately linear in T for
T _<20 K, and takes on a weaker temperature depen-
dence for higher temperatures. This type of behavior
has been observed before in magnetization studies on
single crystals, aligned powders and thin films [1-3].
The flux pinning energy Uo obtained from eqn. (2) by
considering thop to be typically 10-Ss is shown in Fig.
3(a). At every field Uo is an increasing, convex function
of temperature. The observation that Uo is an increas-
ing function of temperature rather than a decreasing
function of temperature has led Hagen and Griessen
[ 14] to propose that a distribution of Uo values exists in
these materials.
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within the screening current J which equals Jc at t = 0.
The driving force for the motion of these flux lines is a
combination of flux line interaction, thermal activation _ 150

and the flux line gradient (Lorentz force). In the con-
ventional thermally activated flux motion model, U is =" 100
assumed to be a linear function of J and to have a
depth Uo when J = 0.

50
This leads to the classical relation [4, 5, 9] for t >>thop,

g(t) = g(0)[l - {k T/ Uo} ln(t /thop)] (i)

The relaxation rate normalized by the initial magnetiza-
tion can bc obtained from the above relation and is

given as (b)

I/M o dM/d In t =- S = -kT/[U o - kT In(to/thop) ] (2)

According to the above relation, S is a linear function

• _--O

2.00

| , i

0.00 0.50 1.00 1.50 2.50

External field (T)

Fig. 3. The flux pinning energy Uo obtained using eqn. (2) shown as

a function of temperature (a) and external field (b). See caption of
Fig. I notation.
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In the vortex glass state, dissipation from the forma-
tion of vortex loops results in a magnetic relaxation of
the form [12]

M(t) = M(0)[ I + (#kT/Uo) ln(t/thop)]-I/_ (3)

where # is the glass exponent. For times which are short
compared with tot and where # = l, eqn. (3) becomes
equivalent to eqn. (1) and the resulting S is given by
eqn. (2). In other words, at low temperatures the pre-
dictions of the activated flux creep and vortex glass are
identical and in qualitative agreement with the data of
Fig. 2(a). At times which are long compared with tcr
(or equivalently at higher temperatures) the vortex
glass model predictes that Moc [ln(t)] -_ and S takes
on a temperature independent value given by S =
--[ln(t/thop)]. Malozemoff and Fisher [12] argue that
the nearly constant value of S reported in the literature
is a consequence of the logarithmic dependence of S on
the observation time. The data of Fig. 2(a) show that
our values of S fall within the range of values observed
by Malozemoff and Fisher, and that S tends to saturate
for all fields as the temperature is increased. The latter
fact is in qualitative agreement with the vortex glass
model. While we have qualitative agreement with the
temperature dependence predicted by the vortex glass
model we do not observe the concomitant [In(t)] -_
relaxation. Instead the magnetization decays as In(t) at
all temperatures used in this study.

Recently, substantial magnetic relaxation has been
reported at temperatures as low as 0.1 K in
YBazCu3OT_x grain aligned powder [15] and at 1.6 K
in c-axis aligned thin film [16] for H applied along the
c-axis. In the present work, however, 4.2 K was the
lowest T at which the relaxation behavior was studied.

In the low temperature limit both the thermally acti-
vated creep and the vortex glass models predict (eqn.
(2)) that S vanishes as T _ 0. Extrapolation of the
data (Fig. 2(a)) to T=0 results in a non-zero S, in
contradiction to both models. This behavior has also

been observed in molybdenum disulfides for T < 0.2 Tc
by Mitin [13]. He has proposed that the observed
relaxation results from quantum tunneling or hopping
of the flux line segments across the potential barrier
separating two pinning centers, and is athermal in
nature. The hopping time for this process was estimated

to be ca. 10 -_2 s, which is comparable to thop used in the
present analysis. This phenomenon is similar in princi-
ple to the electron transport mechanism in disordered
semiconductors [17]--quantum tunneling crossing over
to thermal activation as T increases and domination

of the highest rate process at any given T. At present
there is no single model incorporating both these pro-
cesses.

The magnetic field H dependence of U0 is shown
in Fig. 3(b). As can be seen from this figure, the

H dependence of Uo changes continuously as T is
increased. From this figure we observe that Uo is
weakly field dependent for T _<20 K. At all tempera-
tures however, U0 is observed to decrease with increas-
ing field. On the other hand Xu et al. [2] observed U to
increase with increasing fields for the same range of
temperatures used in this experiment. Recent studies of
the field dependence of Uo in grain aligned [18] and
single crystal [19] YBa2Cu_OT_x have shown Uo to
increase with increasing fields at low temperatures and
to decrease with increasing H for T near T_,_,where T_rr
is the irreversibility temperature. This has been at-
tributed to the variation of pinning strength, creation of

field induced pinning centers and granularity. The dis-
parity of the various field dependencies clearly shows
that H dependence of U0 is also not completely under-
stood at present.

5. Conclusions

The temperature and magnetic field dependence of the
flux pinning energy in a c-axis oriented YBa2Cu_OT_,,
thin film have been investigated. The observed linear
temperature dependence of S at low temperatures is
consistent for both the thermally activated flux creep and
the vortex glass models. The observed non-linear tem-
perature dependence of S for T I> 20 K is in agreement
with the vortex glass model, but we do not observe the
expected [In(t)] -_ decay as predicted in this model. The
behavior in the T = 0 limit, however, cannot be under-
stood in terms of either model. At present one must
resort to considering an athermal flux line tunneling
mechanism for motion at T--0. It therefore appears
that no single model adequately describes the tempera-
ture, time, and field dependence of the magnetic relax-
ation in YBazCu3OT_x thin films.
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